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For a class of multistable systems it follows from qualitative results of Melnikov theory that deterministic
and stochastic excitations play equivalent roles in the promotion of chaos. We use such results to suggest:~1!
a method for assessing the role of the noise spectrum in enhancing the signal-to-noise ratio~SNR!, the most
effective spectral shape being that for which the power is distributed closest to the frequency of the Melnikov
scale factor’s peak;~2! a method for more effective SNR enhancement than can be achieved by increasing the
noise, wherein the noise is left unchanged and a harmonic excitation with frequency based on the system’s
Melnikov scale factor is added to the system. The effectiveness of our Melnikov-based methods is confirmed
by numerical simulations. The principle of a practical and effective nonlinear transduction device for enhanc-
ing SNR is proposed and demonstrated numerically.@S1063-651X~96!10808-4#

PACS number~s!: 05.40.1j, 05.45.1b

I. INTRODUCTION

For a class of multistable systems with noise and a peri-
odic signal, the improvement of the signal-to-noise ratio
~SNR! @1# achieved by increasing the noise intensity is
known as stochastic resonance~SR! @2,3# ~or, as it will be
referred to in this paper, classical SR!. The essence of the
physical mechanism underlying classical SR can be de-
scribed as follows@4#. Consider the motion in a bistable
double-well potential of a lightly damped particle subjected
to stochastic excitation and a harmonic excitation~i.e., a sig-
nal! with low frequencyv0. The signal is assumed to have
small enough amplitude that, by itself~i.e., in the absence of
the stochastic excitation!, it is unable to move the particle
from one well to another. We denote the characteristic rate,
that is, the escape rate from a well under the combined ef-
fects of the periodic excitation and the noise, by
a52pntot /Ttot , wherentot is the total number of exits from
a well during timeTtot . We consider the behavior of the
system as we increase the noise while the signal amplitude
and frequency are unchanged. For zero noise,a50, as noted
earlier. For very small noise we havea,v0. As the noise
increases, the ordinate of the spectral density of the output
noise at the frequencyv0, denoted byFn(v0), and the char-
acteristic ratea increase. Experimental and analytical studies
show that, untila'v0, a cooperative effect~i.e., a synchro-
nizationlike phenomenon, as referred to in@5#! occurs
wherein the signal output powerFs(v0) increases as the
noise intensity increases. Remarkably, the increase of
Fs(v0) with noise is faster than that ofFn(v0). This results
in an enhancement of the SNR. The synchronizationlike phe-
nomenon plays a key role in the mechanism just described.

In this paper we offer an interpretation of stochastic reso-
nance from a chaotic dynamics viewpoint. This viewpoint
allows the use of Melnikov theory, which is applicable to a
wide class of multistable systems whose Hamiltonian coun-
terparts have homoclinic or heteroclinic orbits. Melnikov

theory provides a necessary condition for the occurrence of
chaos featuring irregular escapes from the wells. The theory
was originally developed for deterministic systems with har-
monic excitation@6#. It was subsequently extended to those
systems’ quasiperiodically excited counterparts@7#. On the
basis of that extension it has been shown that Melnikov
theory is also applicable to systems with stochastic forcing
@8#.

Melnikov theory yields qualitative results on the basis of
which useful inferences can be made on system behavior
even in the absence of a comprehensive mathematical appa-
ratus such as has been developed for certain aspects of clas-
sical SR. In this paper we use the following consequence of
Melnikov theory: for a wide class of systems, deterministic
and stochastic excitations play qualitatively equivalent roles
in inducing chaotic motions with escapes over a potential
barrier, the motions being in both cases topologically conju-
gate to a shift map. Such motions therefore possess common
qualitative features that suggest the extension of SR ap-
proaches beyond classical SR, so that the SNR can alterna-
tively be improved by keeping the noise unchanged and add-
ing a deterministic excitation selected in accordance with
Melnikov theory, rather than by increasing the noise. We
present qualitative arguments and results of numerical simu-
lations according to which the extension we propose~a! sig-
nificantly improves our ability to enhance SNR,~b! broadens
the range of phenomena explainable by SR, and~c! allows
the development of effective practical devices for enhancing
SNR. Also, since Melnikov theory provides information on
excitation frequencies that are effective in increasing a sys-
tem’s characteristic rate, a chaotic dynamics approach makes
it possible to assess the role of the excitation’s spectral den-
sity in the enhancement of the SNR, a problem of current
interest in classical SR for which other available approaches
can be unwieldy@9#.

Section II describes the class of systems for which our
approach is applicable and reviews briefly pertinent material
on Melnikov theory. Section III considers the case of a
bistable deterministic system excited by a sum of two har-
monic terms. Chaotic behavior in this system is associated
with a broadband spectrum on the basis of which the output
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SNR can be defined, and we show how Melnikov theory can
be used to enhance the SNR in this case. Section IV is de-
voted to classical SR and shows how Melnikov theory can be
used to assess the effect of the spectral density of the noise
on SNR enhancement. Section V shows that, for a system
with signal and noise, the output SNR can be increased more
effectively by adding to the system a harmonic excitation
selected in accordance with Melnikov theory, rather than by
increasing the noise. Section VI shows how the method de-
scribed in Sec. V can be used to develop a nonlinear trans-
ducing device for enhancing SNR. Section VII presents our
conclusions.

II. DYNAMICAL SYSTEMS AND NECESSARY
CONDITION FOR CHAOS

We consider second-order dynamical systems described
by the equation

ẍ~ t !52b ẋ~ t !2V8~x!1G~ t !, ~1!

whereV(x) is a potential function. The unperturbed counter-
part of Eq.~1! is the Hamiltonian system

ẍ52V8~x!. ~2!

We assume that Eq.~2! has a hyperbolic fixed point@6#
connected to itself by a homoclinic orbit or two hyperbolic
fixed points connected by a heteroclinic orbit. As an ex-
ample, we consider in this paper the Duffing-Holmes equa-
tion, which has a double-well potential

V~x!521/2x211/4x4. ~3!

Equation~2! with the potential~3! has the homoclinic orbits
shown in Fig. 1. The homoclinic orbits constitute a separa-
trix, that is, a curve separating motions that evolve around
the centersC2 or C1 and can never cross the potential bar-
rier from motions that evolve around the hyperbolic fixed
pointO and cross the potential barrier periodically~Fig. 1!.
For the potential~3! integration of Eq.~2! with initial condi-
tionsx50, ẋ50 yields the following expressions for the ho-
moclinic orbits:

x0~ t !56A2sech~ t !, ẋ0~ t !56A2sech~ t !tanh~ t !. ~4!

We now review briefly basic Melnikov theory results per-
taining to systems with periodic, quasiperiodic, and stochas-
tic excitation. Let us assume first that the excitation is peri-
odic, that is, in Eq. ~1! G(t)[A0sin(v0t). The Smale-
Birkhoff theorem states that the necesssary condition for the
occurrence of chaos is that the Melnikov function induced by
the perturbation have simple zeros. For the Duffing system
this condition is the Melnikov inequality

24/3b1A0SM~v0!.0, ~5!

where

SM~v!5A2pvsech~pv/2! ~6!

is a system property known as the Melnikov scale factor@7#.
For the Duffing oscillatorSM(v) is shown in Fig. 2.@Also
included in Fig. 2 are plotsg(v) to be defined later.# Next
we assume that the excitation consists of the quasiperiodic
sum

G~ t ![A0sin~v0t1f0!1Aasin~vat !1 (
k51

K

aksin~vkt1wk!.

~7!

For this case a generalization of the Smale-Birkhoff theorem
@7# yields as the necessary condition for chaos the Melnikov
inequality

24b/31A0SM~v0!1AaSM~va!1 (
k51

K

akSM~vk!.0.

~8!

Finally, we assume that the system’s excitation is

G~ t ![A0sin~v0t1f0!1Aasin~vat !1A2DbR~ t !, ~9!

whereR(t) is a Gaussian process with unit variance and
spectral densityg(v). Over any finite time interval, however
large, each realization of the processR(t) may be approxi-
mated as closely as desired@10# by a sum

RN~ t !5 (
k51

K

bksin~vkt1wk!, ~10!

FIG. 1. Phase plane diagram for unperturbed system.

FIG. 2. Melnikov scale factorSM(v) for double-well potential
~dotted line! and normalized power spectrag(v) of stochastic ex-
citation R(t) for three different correlation timest ~solid lines!:
t150.2, t253.0, t3512.0.
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so that the Melnikov inequality, that is, the necessary condi-
tion for chaos, can be written as Eq.~8!, where
ak5A2Dbbk. In Eq. ~10!, bk5Ag(vk)Dv, wk are randomly
chosen phases of uniform distribution on the interval
@0,2p# andvk5kDv; Dv5vmax/K; andvmax is the fre-
quency beyond which the spectrum vanishes~the cutoff fre-
quency!. Note also that in the Melnikov inequality contribu-
tions of terms with high frequencies are suppressed owing to
the exponential decay ofSM(v) with increasingv.

For the damped, forced system, the existence in a plane of
section of a transverse point of intersection between the
stable and unstable manifolds implies the existence of an
infinity of intersection points. Areas bounded by segments of
stable and unstable manifolds between two successive inter-
section points are termed lobes. A set of lobe segments form-
ing a shape roughly similar to the shape of the unperturbed
orbit’s homoclinic orbit is termed a pseudoseparatrix@7#.
Unlike the homoclinic orbit~i.e., unlike the separatrix of Fig.
1!, the pseudoseparatrix is permeable, that is, it can allow
motions occurring within a well to exit from that well. The
transport of phase space across the pseudoseparatrix is af-
fected by detraining and entraining lobes, and is referred to
as chaotic transport@7#. @Detraining ~entraining! lobes are
lobes that will cross or have crossed into the exterior~inte-
rior! region bounded by the pseudoseparatrix@6# — see Fig.
3#. The strength of the chaotic transport, and therefore the
characterisitc ratea, increases as the left-hand side of Eq.~8!
becomes larger@7#. This is true regardless of whether the
excitation is deterministic or stochastic. Moreover, again re-
gardless of whether the excitation is deterministic or stochas-
tic, a qualitative feature of the chaotic motions featuring es-
capes is that their spectral densities have a broadband portion
with significant energy content at and near the system’s char-
acteristic ratea. This follows from the topological conjugacy
of the deterministically or stochastically induced chaotic mo-
tions to a shift map, which is characterized, among other
properties, by the existence of nonperiodic orbits.

In the following sections we use the qualitative consider-
ations summarized above to examine SNR enhancement for
the following types of excitation: deterministic excitation
consisting of a harmonic signal and an added harmonic, ex-
citation consisting of a harmonic signal and noise, and exci-
tation consisting of a harmonic signal, an added harmonic,
and noise.

III. SNR ENHANCEMENT FOR A BISTABLE
DETERMINISTIC SYSTEM

Let us assume that the excitation is a sum of a harmonic
signal and an added harmonic, that is, in Eq.~1!
G(t)[A0sin(v0t)1Aasin(vat). The system is therefore deter-
ministic with, in general, quasiperiodic excitation. The nec-
essary condition for chaos is given by Eq.~8! in which
a15a25•••5aK50. We chooseA0 so that, forAa50, the
motion is confined to one well. In accordance with Melnikov
theory this will be the case if the Melnikov inequality given
by Eq. ~5! is not satisfied. We now add the excitation
Aasin(vat). For a certain regionRa of the parameter space
@Aa ,va#, the system can experience chaotic motion with
jumps over the potential barrier. The Melnikov scale factor
SM(v) provides the information needed to select frequencies
va such that the added excitation is effective in inducing
chaotic behavior. It follows from Eqs.~6! and ~8! that va
should be equal or close to the frequency for whichSM(v) is
largest; see Fig. 2. For chaotic motions the spectral density
has ~i! peaks at the fundamental excitation frequenciesv0
andva and linear combinations thereof, and~ii ! a broadband
portion due to the chaotic nature of the response.

Given the existence in the spectrum of a broadband por-
tion qualitatively similar to that present in the case of clas-
sical SR, it is reasonable to expect that the synchronization-
like phenomenon that occurs in the classical SR case would
similarly occur for the deterministically excited chaotic sys-
tem. This was verified by numerical simulation for a large
number of cases. As a typical example, we consider the case
b50.316,A050.095,v050.0632@for these values Eq.~5!
is not satisfied#, andva51.1. Spectral densities of motions
with these parameters andAa50.263, 0.287, and 0.332, are
shown in Figs. 4~a!, 4~b!, and 4~c!, respectively.~Note that
owing to the broadband portion of the spectrum a SNR can
be defined for the output just as in the case of classical SR.!
For Fig. 4~b!, a50.0672 is close to the signal frequency
v050.0632. The energy in the broadband portion of the
spectrum is depleted, while the energy at the signal’s fre-
quency is enhanced, with respect to their respective counter-
parts in Figs. 4~a! and 4~c!, for whicha50.0395 and 0.158,
respectively. The synchronizationlike phenomenon noted for
classical SR is thus clearly evident in Fig. 4~b!. We also
verified that the motions of Figs. 4~a!, 4~b!, and 4~c! are
indeed chaotic~i.e., their largest Lyapounov exponents, esti-
mated as in@11#, are positive!. Figure 5 shows the depen-
dence of the SNR onAa . Note that the plot of Fig. 5 is
similar qualitatively to plots of the SNR versus noise inten-
sity D for classical SR.

IV. NOISE SPECTRUM EFFECT ON SNR
FOR CLASSICAL SR

We now consider a system excited by noise and a har-
monic signal, which, by itself, cannot induce jumps. To as-
sess the effect of the shape of the noise spectrum on the SNR
we use the fact that the Melnikov scale factorSM(v) is a
measure of the degree to which a harmonic excitation or a
frequency component can be effective in inducing chaotic
behavior.

On the one hand the noise excitation increase has an un-

FIG. 3. Part of phase plane diagram showing intersecting stable
and unstable manifolds of stochastically excited system.
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favorable effect on the SNR insofar as it increases the output
noise level. It is this unfavorable effect that renders classical
SR an apparent paradox. On the other hand, the noise exci-
tation has a favorable effect, that is, it brings the ratea in
line with the frequencyv0 and thus allows the occurrence of
the synchronizationlike phenomenon, which more than
makes up for the increase of the noise. It is reasonable to
expect that the smaller the power of the noise that helps to
bring about a ratea'v0, the better the SNR will be.

We recall that the larger the left-hand side of Eq.~8!, the
stronger is the chaotic transport across the pseudoseparatrix,
and therefore the larger is the ratea @7,8#. Recall that in Eq.
~8! ~in which it is now assumed Aa50),
ak5A2DbAg(vk)Dv. It is therefore clear from Eq.~8! that
for any given power of the stochastic excitation 2Db, the

left-hand side of Eq.~8! becomes larger and the ratea in-
creases, as the integral

I5E
0

vmax
g~v!SM

2 ~v!dv ~11!

increases.@The integrand in Eq.~11! is the ordinate of the
contribution of the stochastic excitation to the spectrum of
the Melnikov process@8#.# We thus obtain the interesting
qualitative result that, for a given Melnikov scale factor
SM(v) and a given power of the stochastic excitation, the
rate a increases as the spectral power of the excitation is
distributed nearer to the frequency ofSM(v)’s peak,vpk ~the
greatest effectiveness being achieved by a single component
with frequency equal or close tovpk).

We now illustrate the usefulness of this result for a system
with classical SR@i.e., one for which in Eq.~9! Aa50,
D.0#. We assumeR(t) has the Lorentzian spectral distri-
bution g(v)5g/t(11v2t2)21 cut off at the frequency
vmax; t is the correlation time andg is a normalization
constant such that the variance ofR(t) is unity. Figure 2
shows spectrag(v) for three values oft andvmax53.0. As
can be seen in Fig. 2, the Melnikov scale factorSM(v)
would in practice suppress contributions of components with
frequenciesv.v max. Therefore our use of a cutoff point,
which is motivated merely by computational convenience,
does not affect the significance of our results. We are inter-
ested in the effect on the peak SNR of the parametert ~i.e.,
of the shape of the noise spectrum!.

We examine first the caset5t150.2. Examples of aver-
aged output spectraP(v) for A050.3, v050.069,
vmax53.0,b50.25 are shown in Figs. 6~a!–6~c! for power
D50.01, 0.04, and 0.22, respectively. The averaging was
performed over 225 noise realizations approximated by Eq.
~10! with 100,K,500. Note thatA0,4b/3SM(v0), so that
no chaotic behavior can be induced by the periodic signal
alone. However, it was verified that, for the noise realizations
used to obtain the results of Figs. 6~a!–6~c!, the Melnikov
inequality given by Eq.~8! was satisfied, and that the respec-
tive motions were chaotic. Energy transfer to the signal fre-
quency was found to be highest when the ratea for the

FIG. 4. Power spectra of system with no stochastic excitation
(D50). The amplitudeA0 and frequencyv0 of the signal are kept
constant. The system is subjected to an additional harmonic excita-
tion with frequencyva51.1 and amplitudeAa : ~a! Aa50.263,~b!
Aa50.287,~c! Aa50.332~logarithms in base 10).

FIG. 5. Signal-to-noise ratio@1# r vs amplitude of added har-
monic excitationAa , without stochastic component (D50).
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chaotic motion was close to the signal frequency; see Fig.
6~b!. The dependence of SNR on noise intensity is plotted in
Fig. 7.

Figure 7 also shows similar plots fort53 and 12, the
parametersA0, v0, vmax, andb being the same as for the
caset50.2. We note that fort50.2, 3, and 12,I50.626,
0.411, and 0.157, respectively. As expected, the peak SNR is
smaller and occurs at higher values ofD for larger correla-
tion timest, that is for spectral shapes with energy content
distributed farther from the frequencyvpk ~see Fig. 2! or,
equivalently, for smaller values ofI . We note that similar
effects were observed experimentally; see@12#.

V. SYSTEM WITH HARMONIC SIGNAL AND NOISE:
SNR ENHANCEMENT BY ADDING

HARMONIC EXCITATION

The results of the preceding sections suggest the follow-
ing method for improving SNR. Assume thatAa50, and that
for a set of valuesA0, v0, b, andD the system has low SNR.
We could improve the SNR by increasingD, as illustrated
earlier. However, it is more effective to increase the SNR by
keepingD unchanged and adding an excitationAasin(vat)
such that ~1! va is equal or close to the frequency of
SM(v)’s peak and~2! Aa is so chosen as to bring about a
characteristic rate comparable to the signal frequency. An
example is shown in Fig. 6~d!, for which all parameters and
the normalized spectrumg(v) are the same as for Fig. 6~a!,
except that the system is subjected to an added excitation
with amplitudeAa50.23 and frequencyva51.1. This ap-
proach to increasing SNR is seen to be quite effective. Note
that the added harmonic excitation induces subharmonics
and superharmonics that are well separated from the signal
and can therefore be filtered out by a suitable passband filter.

VI. PROPOSED NONLINEAR TRANSDUCING DEVICE
FOR ENHANCING SNR

We now describe the principle of a nonlinear transducing
device for improving a signal’s SNR based on the method

FIG. 6. Averaged power spectra of output for stochastically excited system:~a!–~c! Increasing noise intensityD andAa50. ~d! The same
noise intensityD as in ~a!, andAa50.23. Noise correlation timet50.2 in all cases~logarithms in base 10).

FIG. 7. Signal-to-noise ratio@1# r vs noise intensityD for the
three noise correlation timest of Fig. 2.
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discussed in the preceding section. Consider a signal for
which the SNR is unsatisfactory. The signal and the atten-
dant noise — from which we filter out components well
separated from the signal, that is, components with frequen-
cies exceeding, say, three times the signal frequency — are
used to excite the transducing device, consisting, for ex-
ample, of a Duffing oscillator. The SNR of the output will in
general be poor, but under certain conditions it can be im-
proved by the addition of a harmonic excitation with fre-
quency equal or close to the frequency of the Melnikov scale
factor’s peak. The role of the added harmonic excitation is to
bring about a chaotic motion with characteristic rate close to
the signal frequency. To illustrate the principle of the device,
we show in Fig. 8~a! the spectrum of a signalA0sinv0t,
A050.05,v050.069 in the presence of noiseA2DbR(t),
with t50.2 ~see Fig. 2!, b50.25, andD50.72. Using a low
passband filter, we filter out the noise components with fre-
quencies larger than three times the frequency of the signal.
The signal and the noise left after the filtering@i.e., the noise
A2DbR(t)H(3v0), whereH denotes the Heaviside step
function# are used as input to a nonlinear system described
by Eq. ~1!. For Aa50 the SNR of the output is not better
than the input SNR. However, by subjecting the nonlinear
system to the additional excitationAasinvat (Aa50.23 and
va51.1) we obtain the result shown in Fig. 8~b!.

VII. CONCLUSIONS

The chaotic dynamics approach adopted in this paper pro-
vides a unifying framework wherein classical stochastic
resonance — the enhancement of the SNR achieved by in-
creasing the noise intensity — is viewed as a particular case
of a type of chaotic behavior that includes, as another par-
ticular case, the enhancement of the SNR by adding a har-
monic excitation while leaving the noise unchanged. By
making it possible to apply Melnikov theory, the chaotic
dynamics approach allows the use of qualitative results re-
lated to the fundamental fact that for each of those particular
cases the system motion is topologically conjugate to a shift
map. One of these qualitative results is the existence, inde-
pendent of the deterministic, stochastic, or mixed character
of the excitation, of a broadband portion of the output spec-
trum, which allows the occurrence of a synchronizationlike
phenomenon that is the key to the enhancement of the SNR.
Another qualitative result is that the effectiveness of a har-
monic excitation or frequency component in promoting cha-
otic motion with jumps over a potential barrier depends on
the system’s Melnikov scale factor.

These qualitative results suggested the investigation of the
alternative mechanism for enhancing SNR, wherein the noise
intensity is left unchanged and a harmonic excitation is
added instead. This mechanism is more effective — allows a
better SNR to be obtained — than the mechanism that relies
on increasing the noise intensity. The alternative mechanism
we investigated allows the development of a practical device
that accepts a signal with low SNR and converts it into an
output with significantly greater SNR. Our alternative
mechanism may also explain some natural phenomena more
plausibly than is the case for classical stochastic resonance.
For example, experiments on crayfish mechanoreceptors
have shown that the capability of the latter to detect weak
signals in a noisy environment could be explained by classi-
cal stochastic resonance@13#. However, one might argue that
~a! classical stochastic resonance is relatively inefficient, and
~b! a neuron is unlikely to control the level of external noise
and increase it for the purpose of SNR enhancement. It is
therefore reasonable to also consider the possibility that the
neuron’s capability to increase the SNR is due to the action
of periodic or nearly periodic physiological cycles. Our al-
ternative mechanism for enhancing SNR could be relevant in
this context.

Qualitative results of Melnikov theory also suggested a
transparent and convenient method for assessing the effect of
the spectral density of the noise on SNR enhancement by
classical SR. From that method it follows that the closer the
spectral power of the noise is distributed to the Melnikov
scale factor’s peak, the more effective the associated spectral
shape is in enhancing the SNR. Numerical simulations, of
which typical examples are included in the paper, support the
qualitative results we just summarized.
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FIG. 8. Averaged power spectra of~a! input, consisting of sto-
chastic excitation R(t), harmonic signal with frequency
v050.069, and additional harmonic excitation with frequency
va51.1.~b! Output of transducing device; see text for details~loga-
rithms in base 10).
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pressed in dB asr510log10(S/N), whereS andN are, respec-
tively, the ordinate of the output spectrum and the ordinate of
the broadband output spectrum at the signal frequencyv0.
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