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Stochastic resonance: A chaotic dynamics approach
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For a class of multistable systems it follows from qualitative results of Melnikov theory that deterministic
and stochastic excitations play equivalent roles in the promotion of chaos. We use such results to @lggest:
a method for assessing the role of the noise spectrum in enhancing the signal-to-noi§8NBliothe most
effective spectral shape being that for which the power is distributed closest to the frequency of the Melnikov
scale factor’s peak2) a method for more effective SNR enhancement than can be achieved by increasing the
noise, wherein the noise is left unchanged and a harmonic excitation with frequency based on the system’s
Melnikov scale factor is added to the system. The effectiveness of our Melnikov-based methods is confirmed
by numerical simulations. The principle of a practical and effective nonlinear transduction device for enhanc-
ing SNR is proposed and demonstrated numericg8y063-651X96)10808-4

PACS numbeps): 05.40:+j, 05.45+b

[. INTRODUCTION theory provides a necessary condition for the occurrence of
chaos featuring irregular escapes from the wells. The theory
For a class of multistable systems with noise and a periwas originally developed for deterministic systems with har-
odic signal, the improvement of the signal-to-noise ratiomonic excitation[6]. It was subsequently extended to those
(SNR) [1] achieved by increasing the noise intensity issystems’ quasiperiodically excited counterpdits On the
known as stochastic resonan@R) [2,3] (or, as it will be  pasis of that extension it has been shown that Melnikov
referred to in this paper, classical BR'he essence of the theory is also applicable to systems with stochastic forcing
physical mechanism underlying classical SR can be defg].
scribed as follows4]. Consider the motion in a bistable Melnikov theory yields qualitative results on the basis of
double-well potential of a lightly damped particle subjectedwhich useful inferences can be made on system behavior
to stochastic excitation and a harmonic excitatioe., a sig-  even in the absence of a comprehensive mathematical appa-
nal) with low frequencyw,. The signal is assumed to have ratus such as has been developed for certain aspects of clas-
small enough amplitude that, by its€ife., in the absence of sjcal SR. In this paper we use the following consequence of
the stochastic excitationit is unable to move the particle Melnikov theory: for a wide class of systems, deterministic
from one well to another. We denote the characteristic rateand stochastic excitations play qualitatively equivalent roles
that is, the escape rate from a well under the combined efin inducing chaotic motions with escapes over a potential
fects of the periodic excitation and the noise, by barrier, the motions being in both cases topologically conju-
a= 27N/ Tior, Whereny, is the total number of exits from  gate to a shift map. Such motions therefore possess common
a well during timeT,,. We consider the behavior of the qualitative features that suggest the extension of SR ap-
system as we increase the noise while the signal amplitudgroaches beyond classical SR, so that the SNR can alterna-
and frequency are unchanged. For zero naise(, as noted tively be improved by keeping the noise unchanged and add-
earlier. For very small noise we have<w,. As the noise ing a deterministic excitation selected in accordance with
increases, the ordinate of the spectral density of the outpelnikov theory, rather than by increasing the noise. We
noise at the frequenay,, denoted byP,(w,), and the char-  present qualitative arguments and results of numerical simu-
acteristic rater increase. Experimental and analytical studieslations according to which the extension we propsesig-
show that, untile~ w,, a cooperative effedi.e., a synchro- nificantly improves our ability to enhance SN@®) broadens
nizationlike phenomenon, as referred to [B]) occurs the range of phenomena explainable by SR, émdllows
wherein the signal output poweb(wg) increases as the the development of effective practical devices for enhancing
noise intensity increases. Remarkably, the increase NR. Also, since Melnikov theory provides information on
d(wp) with noise is faster than that df,(w). This results  excitation frequencies that are effective in increasing a sys-
in an enhancement of the SNR. The synchronizationlike phetem’s characteristic rate, a chaotic dynamics approach makes
nomenon plays a key role in the mechanism just describedit possible to assess the role of the excitation’s spectral den-
In this paper we offer an interpretation of stochastic resosity in the enhancement of the SNR, a problem of current
nance from a chaotic dynamics viewpoint. This viewpointinterest in classical SR for which other available approaches
allows the use of Melnikov theory, which is applicable to acan be unwieldy9].
wide class of multistable systems whose Hamiltonian coun- Section Il describes the class of systems for which our
terparts have homoclinic or heteroclinic orbits. Melnikov approach is applicable and reviews briefly pertinent material
on Melnikov theory. Section Il considers the case of a
bistable deterministic system excited by a sum of two har-
“Permanent address: Institute of Physics, Cracow Pedagogicahonic terms. Chaotic behavior in this system is associated
University, Podchomaych 2, Krakav, Poland. with a broadband spectrum on the basis of which the output

54 1298



54 STOCHASTIC RESONANCE: A CHAOTIC DYNAMIG . .. 1299

X 2.4 |

164§ :
— |
3 | |
m 0 Cy = &
* %* X 0.8 A -

L
- ‘ . 0.0
00 = 2.0 3.0

FIG. 2. Melnikov scale factoBy (w) for double-well potential
(dotted ling and normalized power spectg{w) of stochastic ex-
citation R(t) for three different correlation times (solid lines:

SNR can be defined, and we show how Melnikov theory carf~0-2: 72=3.0, 73=12.0.
be used to enhance the SNR in this case. Section IV is de- W iew briefly basic Melnikov th it
voted to classical SR and shows how Melnikov theory can b% € now review brietly basic Vieinikov theory results per-

FIG. 1. Phase plane diagram for unperturbed system.

used to assess the effect of the spectral density of the noi gining_to systems with periodi_c, quasiperiodic_, ar_1d s.tocha.s-
on SNR enhancement. Section V shows that, for a syste C excitation. Let us assume first that the excitation is peri-

with signal and noise, the output SNR can be increased mo (_jic, that is, in Eq.(1) G()=Acsin(wc). The _S_male-
effectively by adding to the system a harmonic excitation irkhoff theorem states that the necesssary condition for the

selected in accordance with Melnikov theory, rather than b)}:)ccurrence of chaos is that the Melnikov function induced by

increasing the noise. Section VI shows how the method det-he perturbation have simple zeros. For the Duffing system

scribed in Sec. V can be used to develop a nonlinear trandlis condition is the Melnikov inequality
ducing device for enhancing SNR. Section VII presents our — 4138+ AgSy (wg) >0, (5)
conclusions.

where

Il. DYNAMICAL SYSTEMS AND NECESSARY
CONDITION FOR CHAOS

We consider second-order dynamical systems describeg a system property known as the Melnikov scale faEtdr

Su(w)= \/Emusecm Twl2) (6)

by the equation For the Duffing oscillatoiSy,(w) is shown in Fig. 2[Also
included in Fig. 2 are plotg(w) to be defined late}.Next
X(t)=—Bx(t)—V'(x)+G(t), (1) we assume that the excitation consists of the quasiperiodic
sum

whereV(x) is a potential function. The unperturbed counter-
part of Eqg.(1) is the Hamiltonian system

K
G(t)=Agsin(wot + ¢g) + Asin(w,t) + kZl a,sin(wit + @y).
K= —V'(). ) : @

We assume that Eq2) has a hyperbolic fixed poirft6] For this case a generalization of the Smale-Birkhoff theorem
connected to itself by a homoclinic orbit or two hyperbolic [7] yields as the necessary condition for chaos the Melnikov
fixed points connected by a heteroclinic orbit. As an ex-inequality
ample, we consider in this paper the Duffing-Holmes equa-

tion, which has a double-well potential ¢

—4BI3+ AgSu(@o) + AsSu(@a) + 2, &Sy (w)>0.
V(X)= — 122+ 1/4x°. 3) =t ®

Equation(2) with the potentiak3) has the homoclinic orbits Finally, we assume that the system’s excitation is

shown in Fig. 1. The homoclinic orbits constitute a separa-

trix, that is, a curve separating motions that evolve around  G(t)=Agsin(wot+ ¢g) + AzSin(w,t) + V2D BR(t), (9)

the centersC_ or C, and can never cross the potential bar- ) ) . ) )

rier from motions that evolve around the hyperbolic fixedWhere R(t) is a Gaussian process with unit variance and
point O and cross the potential barrier periodicalig. 1).  SPectral densitg(w). Over any finite time interval, however

For the potentia(3) integration of Eq(2) with initial condi-  large, each realization of the proceB¢t) may be approxi-
tionsx=0, x=0 yields the following expressions for the ho- Mated as closely as desirftD] by a sum
moclinic orbits: K
: Ra(t)= bysi t+ o)), 10
Xo(t) = = \2seclit), Xo(t)= = 2seclit)tani(t). (4) n(t) kzl St + ¢ (10
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Detraini Ill. SNR ENHANCEMENT FOR A BISTABLE
Lobe mning DETERMINISTIC SYSTEM

Entraining Let us assume that the excitation is a sum of a harmonic
Lobe signal and an added harmonic, that is, in E@)
G(t)=Agsin(wot) +Assin(w,t). The system is therefore deter-
ministic with, in general, quasiperiodic excitation. The nec-
essary condition for chaos is given by E@) in which
a;=a,=---=ax=0. We choose&\; so that, forA,=0, the
motion is confined to one well. In accordance with Melnikov
theory this will be the case if the Melnikov inequality given
by Eg. (5) is not satisfied. We now add the excitation
Asin(wyt). For a certain regiorR, of the parameter space
FIG. 3. Part of phase plane diagram showing intersecting stablA_ ,w,], the system can experience chaotic motion with
and unstable manifolds of stochastically excited system. jumps over the potential barrier. The Melnikov scale factor
Su(w) provides the information needed to select frequencies

so that the Melnikov inequality, that is, the necessary condi®a Such that the added excitation is effective in inducing
tion for chaos, can be written as Eq@8), where chaotic behavior. It follows from Egg6) and (8) that w,

— — hould be equal or close to the frequency for wHigi{ w) is
a,= 2D Bby. In Eq.(10), by=\g(w ) Aw, ¢ are randomly S _ : \ .
chosen phases of uniform distribution on the interVall::lrgest; see Fig. 2. For chaotic motions the spectral density
[0,277] and wp=KA®; Aw=wme/K: and oy is the fre has (i) peaks at the fundamental excitation frequencigs

' - ' — Wmax! ™ max -

quency beyond which the spectrum vanistiée cutoff fre- and_wa1 and linear combinations thereof, aid a broadband
guency. Note also that in the Melnikov inequality contribu- portion due to the chaotic nature of the response.

i ‘'t h hiah f : 4 owing t Given the existence in the spectrum of a broadband por-
lons ot terms with Nigh frequencies are suppressed owing 1, , qualitatively similar to that present in the case of clas-
the exponential decay @,,(w) with increasingw.

X i sical SR, it is reasonable to expect that the synchronization-
For the damped, forced system, the existence in a plane gfe phenomenon that occurs in the classical SR case would
section of a transverse point of intersection between thgjmilarly occur for the deterministically excited chaotic sys-
stable and unstable manifolds implies the existence of aem. This was verified by numerical simulation for a large
infinity of intersection points. Areas bounded by segments ohumber of cases. As a typical example, we consider the case
stable and unstable manifolds between two successive integ=0.316,A,=0.095, w,=0.0632[for these values Eq5)
section points are termed lobes. A set of lobe segments forms not satisfiedf and w,=1.1. Spectral densities of motions
ing a shape roughly similar to the shape of the unperturbedith these parameters amd,=0.263, 0.287, and 0.332, are
orbit’s homoclinic orbit is termed a pseudoseparafff. shown in Figs. &), 4(b), and 4c), respectively(Note that
Unlike the homoclinic orbiti.e., unlike the separatrix of Fig. owing to the broadband portion of the spectrum a SNR can
1), the pseudoseparatrix is permeable, that is, it can allovbe defined for the output just as in the case of classical SR.
motions occurring within a well to exit from that well. The For Fig. 4b), «=0.0672 is close to the signal frequency
transport of phase space across the pseudoseparatrix is afo=0.0632. The energy in the broadband portion of the
fected by detraining and entraining lobes, and is referred tépectrum is depleted, while the energy at the signal’s fre-
as chaotic transpolfft7]. [Detraining (entraining lobes are quency is enhanced, with respect to their respective counter-
lobes that will cross or have crossed into the extefiote- ~ Parts in Figs. 48) and 4c), for which «'=0.0395 and 0.158,
rior) region bounded by the pseudosepardifik— see Fig. respectively. The synchronizationlike phenomenon noted for
3]. The strength of the chaotic transport, and therefore th&'@ssical SR is thus clearly evident in Figib We also
characterisitc rate, increases as the left-hand side of ). Verified that the motions of Figs.(@, 4(b), and 4c) are
becomes largef7]. This is true regardless of whether the indeed chaotigi.e., their largest Lyapounov exponents, esti-

excitation is deterministic or stochastic. Moreover, again re-m"’lte'd as ir11], are positive. Figure 5 shows the depen-

gardless of whether the excitation is deterministic or stochasq.ence of the SNR om,. Note that the plot of Fig. 5 is

4 L . . . similar qualitatively to plots of the SNR versus noise inten-
tic, a qualitative feature of the chaotic motions featuring es—S ity D for classical SR
capes is that their spectral densities have a broadband portion '
with significant energy content at and near the system’s char-
acteristic ratex. This follows from the topological conjugacy
of the deterministically or stochastically induced chaotic mo-
tions to a shift map, which is characterized, among other
properties, by the existence of nonperiodic orbits. We now consider a system excited by noise and a har-
In the following sections we use the qualitative consider-monic signal, which, by itself, cannot induce jumps. To as-
ations summarized above to examine SNR enhancement fgess the effect of the shape of the noise spectrum on the SNR
the following types of excitation: deterministic excitation we use the fact that the Melnikov scale fac®y(w) is a
consisting of a harmonic signal and an added harmonic, exneasure of the degree to which a harmonic excitation or a
citation consisting of a harmonic signal and noise, and excifrequency component can be effective in inducing chaotic
tation consisting of a harmonic signal, an added harmonichehavior.

and noise. On the one hand the noise excitation increase has an un-

IV. NOISE SPECTRUM EFFECT ON SNR
FOR CLASSICAL SR
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increases[The integrand in Eq(1l) is the ordinate of the
contribution of the stochastic excitation to the spectrum of
the Melnikov procesg$8].] We thus obtain the interesting
. qualitative result that, for a given Melnikov scale factor
3 Su(w) and a given power of the stochastic excitation, the
‘:ﬂ rate « increases as the spectral power of the excitation is
S distributed nearer to the frequency®(w)’s peak,wy (the

greatest effectiveness being achieved by a single component
with frequency equal or close @,).

We now illustrate the usefulness of this result for a system
with classical SRJi.e., one for which in Eq.9) A,=0,
D>0]. We assuméeR(t) has the Lorentzian spectral distri-
bution g(w)=vy/7(1+ w?7%) "1 cut off at the frequency
wmax; T IS the correlation time and/ is a normalization

FIG. 4. Power spectra of system with no stochastic excitationconstant such that the variance B{t) is unity. Figure 2
(D=0). The amplituded, and frequencyw, of the signal are kept  shows spectrg(w) for three values ofr and w 5= 3.0. As
constant. The system is subjected to an additional harmonic excitzan be seen in Fig. 2, the Melnikov scale fac&y(w)
tion with frequencyw,= 1.1 and amplitudé\, : (a) A,=0.263,(b)  would in practice suppress contributions of components with
Aq=0.287,(c) A;=0.332(logarithms in base 10). frequenciesw™ w 5. Therefore our use of a cutoff point,

which is motivated merely by computational convenience,
favorable effect on the SNR insofar as it increases the outputoes not affect the significance of our results. We are inter-
noise level. It is this unfavorable effect that renders classicaésted in the effect on the peak SNR of the parametge.,
SR an apparent paradox. On the other hand, the noise exaf the shape of the noise spectrum
tation has a favorable effect, that is, it brings the ratan We examine first the case= ,=0.2. Examples of aver-
line with the frequencywq and thus allows the occurrence of aged output spectraP(w) for Ay=0.3, wy=0.069,
the synchronizationlike phenomenon, which more thanw,=3.0, 3=0.25 are shown in Figs.(8—6(c) for power
makes up for the increase of the noise. It is reasonable tD=0.01, 0.04, and 0.22, respectively. The averaging was
expect that the smaller the power of the noise that helps tperformed over 225 noise realizations approximated by Eq.
bring about a rater~ wg, the better the SNR will be. (10) with 100<K<500. Note that\;<4B/3Sy(wg), so that

We recall that the larger the left-hand side of E8), the  no chaotic behavior can be induced by the periodic signal
stronger is the chaotic transport across the pseudoseparatridone. However, it was verified that, for the noise realizations
and therefore the larger is the ratq7,8]. Recall that in Eq. used to obtain the results of Figs(ap-6(c), the Melnikov
(8 (n which it is now assumed A,=0), inequality given by Eq(8) was satisfied, and that the respec-
a,= 2D BVg(wy) Aw. It is therefore clear from Ed8) that  tive motions were chaotic. Energy transfer to the signal fre-
for any given power of the stochastic excitatiob 2, the  quency was found to be highest when the ratdor the
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FIG. 6. Averaged power spectra of output for stochastically excited sygéentc) Increasing noise intensi andA,=0. (d) The same
noise intensityD as in(a), andA,=0.23. Noise correlation time=0.2 in all caseglogarithms in base 10).

chaotic motion was close to the signal frequency; see Fig. V. SYSTEM WITH HARMONIC SIGNAL AND NOISE:

6(b). The dependence of SNR on noise intensity is plotted in SNR ENHANCEMENT BY ADDING

Fig. 7. HARMONIC EXCITATION

Figure 7 also shows similar plots far=3 and 12, the

parameters\g, wg, wmax, and B being the same as for the  The results of the preceding sections suggest the follow-

caser=0.2. We note that for=0.2, 3, and 12)=0.626, ing method for improving SNR. Assume tha{=0, and that

0.411, and 0.157, respectively. As expected, the peak SNR {gr 3 set of valueg\y, wo, B, andD the system has low SNR.

smaller and occurs at higher valuesffor larger correla-  \we could improve the SNR by increasify, as illustrated

tion times 7, that is for spectral shapes with energy contenteayiier, However, it is more effective to increase the SNR by

dlstr_lbuted farther from the frequenay, (see Fig. Zfo_r, keepingD unchanged and adding an excitatiagsin(wst)

equivalently, for smaller valges df We note that similar such that(1) w, is equal or close to the frequency of

effects were observed experimentally; $¢8) Su(w)’s peak and(2) A, is so chosen as to bring about a
characteristic rate comparable to the signal frequency. An

26 example is shown in Fig.(6), for which all parameters and
- the normalized spectrug( ) are the same as for Fig(&,
241 ! except that the system is subjected to an added excitation
with amplitude A,=0.23 and frequencyw,=1.1. This ap-
To . . . . .
= 2”1 proach to increasing SNR is seen to be quite effective. Note
= that the added harmonic excitation induces subharmonics
w20 ; Ta and superharmonics that are well separated from the signal
and can therefore be filtered out by a suitable passband filter.
18-
16 T T T T T
000 005 010 0.15 020 0.25 0.30 VI. PROPOSED NONLINEAR TRANSDUCING DEVICE
D FOR ENHANCING SNR
FIG. 7. Signal-to-noise ratipl] r vs noise intensityD for the We now describe the principle of a nonlinear transducing

three noise correlation timesof Fig. 2. device for improving a signal's SNR based on the method
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VII. CONCLUSIONS

The chaotic dynamics approach adopted in this paper pro-
vides a unifying framework wherein classical stochastic
—2- signal resonance — the enhancement of the SNR achieved by in-

3
A creasing the noise intensity — is viewed as a particular case
& _S_MWWMM of a type of chaotic behavior that includes, as another par-

ticular case, the enhancement of the SNR by adding a har-

! monic excitation while leaving the noise unchanged. By
—51 making it possible to apply Melnikov theory, the chaotic
dynamics approach allows the use of qualitative results re-
'06.00 0.07 0.14 0.21 lated to the fundamental fact that for each of those particular
w cases the system motion is topologically conjugate to a shift
map. One of these qualitative results is the existence, inde-
pendent of the deterministic, stochastic, or mixed character
o of the excitation, of a broadband portion of the output spec-

. trum, which allows the occurrence of a synchronizationlike
—1 ,M (b) phenomenon that is the key to the enhancement of the SNR.
Another qualitative result is that the effectiveness of a har-

§ -2 monic excitation or frequency component in promoting cha-
& % otic motion with jumps over a potential barrier depends on
E” —3 the system’s Melnikov scale factor.
_4l These qualitative results suggested the investigation of the
alternative mechanism for enhancing SNR, wherein the noise
—5- intensity is left unchanged and a harmonic excitation is
added instead. This mechanism is more effective — allows a
_06.00 0.07 0.14 0.21 better SNR to be obtained — than the mechanism that relies
W on increasing the noise intensity. The alternative mechanism

we investigated allows the development of a practical device
FIG. 8. Averaged power spectra () input, consisting of sto- that accepts a signal with low SNR and converts it into an

chastic excitation R(t), harmonic signal with frequency Output with significantly greater SNR. Our alternative
©0=0.069, and additional harmonic excitation with frequency mechanism may also explain some natural phenomena more
w,=1.1.(b) Output of transducing device; see text for detéitga- plausibly than is the case for classical stochastic resonance.
rithms in base 10). For example, experiments on crayfish mechanoreceptors

have shown that the capability of the latter to detect weak
. . . . . . signals in a noisy environment could be explained by classi-
dls_cussed n th? precec_jlng section. Cpn5|der a signal 0l g0 chastic resonanf#3]. However, one might argue that
which the SNR is unsat_lsfactory_. The signal and the atten(a) classical stochastic resonance is relatively inefficient, and
dant noise — from Wh'Ch we .fllter out compon_ents well (b) a neuron is unlikely to control the level of external noise
separated from the signal, that is, components with frequens, increase it for the purpose of SNR enhancement. It is
cles exceedmg, say, three times the_S|gnaI fregqency — Aferefore reasonable to also consider the possibility that the
used to excite _the tra_nsducmg device, consisting, fc_Jr SXnheuron’s capability to increase the SNR is due to the action
ample, of a Duffing oscillator. The SNR of the output will in of periodic or nearly periodic physiological cycles. Our al-

general be poor, b_u'_[ under certain c_ond|t|o_ns_|t can be 'Mternative mechanism for enhancing SNR could be relevant in
proved by the addition of a harmonic excitation with fre- this context

guency equal or close to the frequency of the Melnikov scale Qualitative results of Melnikov theory also suggested a

fag:tor’s peak. The rple of Fhe aqided harmon'|c.eXC|tat|on IS tQransparent and convenient method for assessing the effect of
bring about a chaotic motion with characteristic rate close 9he spectral density of the noise on SNR enhancement by
the signal f_rquency. To illustrate the principle of th.e OleVice’classical SR. From that method it follows that the closer the
we show in Fig. &) the spectrum of a signaosinwgt,  gnectral power of the noise is distributed to the Melnikov
Ap=0.05, wy=0.069 in the presence of ”O'WR(I)’ scale factor’s peak, the more effective the associated spectral
with 7=0.2 (see Fig. 2, 3=0.25, and>=0.72. Using a low shape is in enhancing the SNR. Numerical simulations, of
passbgnd filter, we filter out_ the noise components W|th_ freywhich typical examples are included in the paper, support the
guencies larger than three times the frequency of the S'g”a&ualitative results we just summarized.

The signal and the noise left after the filterifige., the noise
V2D BR(t)H(3wp), where H denotes the Heaviside step
function|] are used as input to a nonlinear system described
by Eq. (1). For A,=0 the SNR of the output is not better
than the input SNR. However, by subjecting the nonlinear Partial support by the Office of Naval Research, Ocean
system to the additional excitatioh,sinwt (A,=0.23 and Engineering Division Grant No. N00014-94-0028 is ac-
w,=1.1) we obtain the result shown in Fig(b3. knowledged with thanks.
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